TERCEIRA QUANTIZAÇÃO E RELATIVIDADE SDCTIE GRACELI
equação de Schrödinger
se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.
ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.
e o mesmo acorre sobre materiais diferenciados.
ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll D
X [ESTADO QUÂNTICO]Na mecânica quântica, a equação de Schrödinger é uma equação diferencial parcial que descreve como o estado quântico de um sistema físico muda com o tempo. Foi formulada no final de 1925, e publicado em 1926, pelo físico austríaco Erwin Schrödinger.[1]
Na mecânica clássica, a equação de movimento é a segunda lei de Newton, (F = ma) utilizada para prever matematicamente o que o sistema fará a qualquer momento após as condições iniciais do sistema. Na mecânica quântica, o análogo da lei de Newton é a equação de Schrödinger para o sistema quântico (geralmente átomos, moléculas e partículas subatômicas sejam elas livres, ligadas ou localizadas). Não é uma equação algébrica simples, mas, em geral, uma equação diferencial parcial linear, que descreve o tempo de evolução da função de onda do sistema (também chamada de "função de estado").[2]:1–2
O conceito de uma função de onda é um postulado fundamental da mecânica quântica. A equação de Schrödinger também é muitas vezes apresentada como um postulado separado, mas alguns autores[3]:Capítulo 3 afirmam que pode ser derivada de princípios de simetria. Geralmente, "derivações" da equação demonstrando sua plausibilidade matemática para descrever dualidade onda-partícula.
Na interpretação padrão da mecânica quântica, a função de onda é a descrição mais completa que pode ser dada a um sistema físico. As soluções para a equação de Schrödinger descrevem não só sistemas moleculares, atômicas e subatômicas, mas também os sistemas macroscópicos, possivelmente, até mesmo todo o universo.[4]:292ff A equação de Schrödinger, em sua forma mais geral, é compatível tanto com a mecânica clássica ou a relatividade especial, mas a formulação original do próprio Schrödinger era não-relativista.
A equação de Schrödinger não é a única maneira de fazer previsões em mecânica quântica — outras formulações podem ser utilizadas, tais como a mecânica matricial de Werner Heisenberg, e o trajeto da integração funcional de Richard Feynman.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Na mecânica quântica, a equação de Schrödinger é uma equação diferencial parcial que descreve como o estado quântico de um sistema físico muda com o tempo. Foi formulada no final de 1925, e publicado em 1926, pelo físico austríaco Erwin Schrödinger.[1]
Na mecânica clássica, a equação de movimento é a segunda lei de Newton, (F = ma) utilizada para prever matematicamente o que o sistema fará a qualquer momento após as condições iniciais do sistema. Na mecânica quântica, o análogo da lei de Newton é a equação de Schrödinger para o sistema quântico (geralmente átomos, moléculas e partículas subatômicas sejam elas livres, ligadas ou localizadas). Não é uma equação algébrica simples, mas, em geral, uma equação diferencial parcial linear, que descreve o tempo de evolução da função de onda do sistema (também chamada de "função de estado").[2]:1–2
O conceito de uma função de onda é um postulado fundamental da mecânica quântica. A equação de Schrödinger também é muitas vezes apresentada como um postulado separado, mas alguns autores[3]:Capítulo 3 afirmam que pode ser derivada de princípios de simetria. Geralmente, "derivações" da equação demonstrando sua plausibilidade matemática para descrever dualidade onda-partícula.
Na interpretação padrão da mecânica quântica, a função de onda é a descrição mais completa que pode ser dada a um sistema físico. As soluções para a equação de Schrödinger descrevem não só sistemas moleculares, atômicas e subatômicas, mas também os sistemas macroscópicos, possivelmente, até mesmo todo o universo.[4]:292ff A equação de Schrödinger, em sua forma mais geral, é compatível tanto com a mecânica clássica ou a relatividade especial, mas a formulação original do próprio Schrödinger era não-relativista.
A equação de Schrödinger não é a única maneira de fazer previsões em mecânica quântica — outras formulações podem ser utilizadas, tais como a mecânica matricial de Werner Heisenberg, e o trajeto da integração funcional de Richard Feynman.
Equação[editar | editar código-fonte]
Equação dependente do tempo[editar | editar código-fonte]
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Em que é a unidade imaginária, é a constante de Planck dividida por , e o Hamiltoniano é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.
Em que é a unidade imaginária, é a constante de Planck dividida por , e o Hamiltoniano é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.
Equação independente do tempo[editar | editar código-fonte]
Equação unidimensional[editar | editar código-fonte]
Em uma dimensão, a equação de Schrödinger independente do tempo para uma partícula escreve-se:[6]
- ,
- X
Em uma dimensão, a equação de Schrödinger independente do tempo para uma partícula escreve-se:[6]
- ,
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que é a função de onda independente do tempo em função da coordenada ; é a constante de Planck dividida por ; é a massa da partícula; é a função energia potencial e é a energia do sistema.
em que é a função de onda independente do tempo em função da coordenada ; é a constante de Planck dividida por ; é a massa da partícula; é a função energia potencial e é a energia do sistema.
Equação multidimensional[editar | editar código-fonte]
Em mais de uma dimensão a equação de Schrödinger independente do tempo para uma partícula escreve-se:[7]
- X
Em mais de uma dimensão a equação de Schrödinger independente do tempo para uma partícula escreve-se:[7]
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que
X
em que
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
é o operador laplaciano em dimensões aplicado à função .
é o operador laplaciano em dimensões aplicado à função .
Relação com outros princípios[editar | editar código-fonte]
Uma maneira mais didática de observar a equação de Schrödinger é em sua forma independente do tempo e em uma dimensão. Para tanto, serão necessárias três relações:
Definição de Energia Mecânica:
X
Uma maneira mais didática de observar a equação de Schrödinger é em sua forma independente do tempo e em uma dimensão. Para tanto, serão necessárias três relações:
Definição de Energia Mecânica:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Relação de De Broglie:
X
Relação de De Broglie:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde é a função de onda, é o comprimento de onda, h é a constante de Planck e p é o momento linear.
Da Relação de De Broglie, temos que ,
X
Onde é a função de onda, é o comprimento de onda, h é a constante de Planck e p é o momento linear.
Da Relação de De Broglie, temos que ,
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que pode ser substituída na equação do Oscilador Harmônico:
X
que pode ser substituída na equação do Oscilador Harmônico:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Rearranjando a equação de energia, temos que ,
X
Rearranjando a equação de energia, temos que ,
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
substituindo na equação anterior:
,
X
substituindo na equação anterior:
,
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
definindo , temos:
X
definindo , temos:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Que é a Equação Independente do Tempo de Schrödinger e também pode ser escrita na notação de operadores:
,
X
Que é a Equação Independente do Tempo de Schrödinger e também pode ser escrita na notação de operadores:
,
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que é o Operador Hamiltoniano operando sobre a função de onda.
em que é o Operador Hamiltoniano operando sobre a função de onda.
Partícula em uma caixa rígida[editar | editar código-fonte]
Ver artigo principal: Partícula em uma caixa

Oscilador harmônico quântico[editar | editar código-fonte]
Ver artigo principal: Oscilador harmônico quânticoAssim como na mecânica clássica, a energia potencial do oscilador harmônico simples unidimensional é:[8]
- X

Assim como na mecânica clássica, a energia potencial do oscilador harmônico simples unidimensional é:[8]
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Lembrando a relação , também pode se escrever:
- X
Lembrando a relação , também pode se escrever:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Então a equação de Schrödinger para o sistema é:
- X
Então a equação de Schrödinger para o sistema é:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
E os níveis de energia correspondentes são:
- X
E os níveis de energia correspondentes são:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Isso ilustra novamente a quantização da energia de estados ligados.
As formulações matemáticas da mecânica quântica são os formalismos matemáticos que permitem uma descrição rigorosa da mecânica quântica. Estas, por sua vez, se distinguem do formalismo matemático da mecânica clássica pelo uso de estruturas matemáticas abstratas, tais como espaços de Hilbert de dimensão infinita e operadores sobre estes espaços. Muitas destas estruturas são retiradas da análise funcional, uma área de pesquisa da matemática que foi influenciada, em parte, pelas necessidades da mecânica quântica. Em resumo, os valores de observáveis físicos, tais como energia e momento linear já não eram considerados como valores de funções em espaço de fase, mas como autovalores, mais precisamente como valores espectrais de operadores lineares no espaço de Hilbert.[1]
Estas formulações da mecânica quântica continuam a ser utilizadas hoje. No centro da descrição estão as ideias de estado quântico e quantum observáveis que são radicalmente diferentes daqueles usados em anos anteriores nos modelos da realidade física. Enquanto a matemática permite o cálculo de muitas quantidades que podem ser medidas experimentalmente, há um limite teórico definido para valores que podem ser medidos em simultâneo. Essa limitação foi elucidada por Heisenberg através de um experimento mental, e é representada matematicamente no novo formalismo pela não comutatividade dos observáveis quânticos.
Antes do surgimento da mecânica quântica como uma teoria separada, a matemática utilizada na física consistiu principalmente de geometria diferencial e equações diferenciais parciais. Teoria das probabilidades foi utilizado em mecânica estatística. A intuição geométrica claramente desempenhou um papel importante nos dois primeiros casos e, consequentemente, em teorias da relatividade que foram formuladas inteiramente em termos de conceitos geométricos. A fenomenologia da física quântica surgiu aproximadamente entre 1895 e 1915, e de 10 a 15 anos antes do surgimento da teoria quântica (cerca de 1925) os físicos continuaram a pensar na teoria quântica dentro dos limites do que é agora chamado física clássica, e em particular dentro das mesmas estruturas matemáticas. O exemplo mais sofisticado disso é a regra de quantização de Sommerfeld-Wilson-Ishiwara, que foi formulada inteiramente no espaço de fase clássico.
Isso ilustra novamente a quantização da energia de estados ligados.
As formulações matemáticas da mecânica quântica são os formalismos matemáticos que permitem uma descrição rigorosa da mecânica quântica. Estas, por sua vez, se distinguem do formalismo matemático da mecânica clássica pelo uso de estruturas matemáticas abstratas, tais como espaços de Hilbert de dimensão infinita e operadores sobre estes espaços. Muitas destas estruturas são retiradas da análise funcional, uma área de pesquisa da matemática que foi influenciada, em parte, pelas necessidades da mecânica quântica. Em resumo, os valores de observáveis físicos, tais como energia e momento linear já não eram considerados como valores de funções em espaço de fase, mas como autovalores, mais precisamente como valores espectrais de operadores lineares no espaço de Hilbert.[1]
Estas formulações da mecânica quântica continuam a ser utilizadas hoje. No centro da descrição estão as ideias de estado quântico e quantum observáveis que são radicalmente diferentes daqueles usados em anos anteriores nos modelos da realidade física. Enquanto a matemática permite o cálculo de muitas quantidades que podem ser medidas experimentalmente, há um limite teórico definido para valores que podem ser medidos em simultâneo. Essa limitação foi elucidada por Heisenberg através de um experimento mental, e é representada matematicamente no novo formalismo pela não comutatividade dos observáveis quânticos.
Antes do surgimento da mecânica quântica como uma teoria separada, a matemática utilizada na física consistiu principalmente de geometria diferencial e equações diferenciais parciais. Teoria das probabilidades foi utilizado em mecânica estatística. A intuição geométrica claramente desempenhou um papel importante nos dois primeiros casos e, consequentemente, em teorias da relatividade que foram formuladas inteiramente em termos de conceitos geométricos. A fenomenologia da física quântica surgiu aproximadamente entre 1895 e 1915, e de 10 a 15 anos antes do surgimento da teoria quântica (cerca de 1925) os físicos continuaram a pensar na teoria quântica dentro dos limites do que é agora chamado física clássica, e em particular dentro das mesmas estruturas matemáticas. O exemplo mais sofisticado disso é a regra de quantização de Sommerfeld-Wilson-Ishiwara, que foi formulada inteiramente no espaço de fase clássico.
Postulados da mecânica quântica[editar | editar código-fonte]
Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:
- O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as coordenadas generalizadas e seus momentos conjugados .
- O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em .
- A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais.
A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica.[2]
- Todo sistema físico está associado a um espaço de Hilbert H complexo e separável, sendo o produto interno de H definido por . A todo estado físico associa-se um conjunto de vetores unitários de H que diferem apenas por uma fase complexa.
- Toda grandeza física, também chamada de observável, está associada a um operador auto-adjunto densamente definido em H.
- Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
- Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade de encontrar o autovalor é dada por
- ,
- X
Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:
- O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as coordenadas generalizadas e seus momentos conjugados .
- O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em .
- A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais.
A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica.[2]
- Todo sistema físico está associado a um espaço de Hilbert H complexo e separável, sendo o produto interno de H definido por . A todo estado físico associa-se um conjunto de vetores unitários de H que diferem apenas por uma fase complexa.
- Toda grandeza física, também chamada de observável, está associada a um operador auto-adjunto densamente definido em H.
- Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
- Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade de encontrar o autovalor é dada por
- ,
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é o grau de degenerescência de e correspondem aos autovetores de A com autovalor .
- Se em uma medida de uma grandeza física no estado encontramos um autovalor de , imediatamente após a medida o estado do sistema será a projeção normalizada de no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
- A evolução no tempo do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coerência
- X
onde é o grau de degenerescência de e correspondem aos autovetores de A com autovalor .
- Se em uma medida de uma grandeza física no estado encontramos um autovalor de , imediatamente após a medida o estado do sistema será a projeção normalizada de no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
- A evolução no tempo do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coerência
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde H é o Hamiltoniano do sistema e é a constante reduzida de Planck.
- O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Partículas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmions.
onde H é o Hamiltoniano do sistema e é a constante reduzida de Planck.
- O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Partículas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmions.
Nenhum comentário:
Postar um comentário