sábado, 3 de outubro de 2020

 

TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]


Lei de Lambert-Beer

lei de Beer-Lambert, também conhecida como lei de Beer ou lei de Beer-Lambert-Bouguer é uma relação empírica que, na Óptica, relaciona a absorção de luz com as propriedades do material atravessado por esta.

Equações[editar | editar código-fonte]

Isto se pode expressar de distintas maneiras:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Onde:

Em resumo, a lei explica que há uma relação exponencial entre a transmissão de luz através de uma substância e a concentração da substância, assim como também entre a transmissão e a longitude do corpo que a luz atravessa. Se conhecemos l e α, a concentração da substância pode ser deduzida a partir da quantidade de luz transmitida.

As unidades de c e α dependem do modo em que se expressa a concentração da substância absorvente. Se a substância é líquida, se deve expressar como uma fração molar. As unidades de α são o inverso do comprimento (por exemplo cm−1). No caso dos gases, c pode ser expressada como densidade (a longitude ao cubo, por exemplo cm−3), em cujo caso α é uma seção representativa da absorção e tem as unidades em comprimento ao quadrado (cm2, por exemplo). Se a concentração de c está expressa em moles por volume, α é a absorvância molar normalmente dada em mol cm−2. No entanto, também pode-se tratar de uma suspensão e aí a unidade de concentração é expressa em FTU.

O valor do coeficiente de absorção α varia segundo os materiais absorventes e com o comprimento de onda para cada material em particular. Deve ser determinado experimentalmente.

A lei tende a não ser válida para concentrações muito elevadas, especialmente se o material dispersa muito a luz.

A relação da lei entre concentração e absorção de luz é a base do uso de espectroscopia para determinar a concentração de substâncias em química analítica.

Lei de Beer-Lambert na atmosfera[editar | editar código-fonte]

Esta lei também se aplica para descrever a atenuação da radiação solar ao passar através da atmosfera. Neste caso há dispersão da radiação além da absorção. A lei de Beer-Lambert para a atmosfera é expressa por:

 ,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde cada  é um coeficiente de extinção cujo sub-índice identifica a fonte de absorção ou dispersão:

  •  faz referência a aerossóis densos (que absorvem e dispersam)
  •  são gases uniformemente misturados (principalmente dióxido de carbono () é oxigênio molecular () que só absorve)
  •  é dióxido de nitrogênio, devido principalmente à contaminação (só absorve)
  •  é a absorção produzida pelo vapor de água
  •  é ozônio (só absorção)
  •  é a dispersão de Rayleigh para o oxigênio molecular () e nitrogênio () (responsável pela cor azul do céu).






Coeficiente de difusão

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa

Na física, o coeficiente de difusão ou difusividade de massa é um valor que representa a facilidade com que cada soluto em particular se move em um solvente determinado. É uma proporcionalidade constante entre o fluxo molar devido a difusão molecular e o gradiente na concentração de espécies (ou pela força condutora para a difusão). A difusividade é encontrada na lei de Fick e numerosas outras equações da físico-química, relacionadas com a difusão de matéria ou energia

É geralmente adequada para um dado par de espécies químicas. Para um sistema multicomponente, é recomendável para cada par de espécies no sistema.

Depende de três fatores:

Quanto maior a difusividade (de uma substância em relação à outra), mais rápido elas difundem-se uma na outra.

Este coeficiente tem unidades no SI de m²/s (comprimento²/tempo).

Dependência da temperatura do coeficiente de difusão[editar | editar código-fonte]

Tipicamente, o coeficiente de difusão de um composto é aproximadamente 10.000 vezes maior no ar que em água. Dióxido de carbono, por exemplo, no ar tem um coeficiente de difusão de 16 mm²/s, e em água seu coeficiente é 0,0016 mm²/s[1].

O coeficiente de difusão em sólidos a diferentes temperaturas é frequentemente encontrado e bem predito pela equação

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde

  •  é o coeficiente de difusão
  •  é o coeficiente de difusão máximo (a temperatura infinita)
  •  é a energia de ativação para difusão em dimensões de [energia (quantidade de substância)−1]
  •  é a temperatura em unidades de [temperatura absoluta] (kelvins ou graus Rankine)
  •  é a constante dos gases em dimensões de [energia temperatura−1 (quantidade de substância)−1]

Uma equação desta forma é conhecida como a equação de Arrhenius.

Uma dependência aproximada do coeficiente de difusão da temperatura em líquidos pode frequentemente ser encontrado usando a equação de Stokes-Einstein, a qual prevê que:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde:

T1 e T2 denota temperaturas 1 e 2, respectivamente
D é o coeficiente de difusão (cm²/s)
T é a temperatura absoluta (K),
μ é a viscosidade dinâmica do solvente (Pa·s)

A dependência do coeficiente de difusão da temperatura para gases pode ser expressa usando-se a teoria de Chapman-Enskog (predições precisas na média em aproximadamentre 8%)[2]:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde:

  • 1 e 2 indexas os dois tipos de moléculas presentes na mistura gasosa
  • T – temperatura (K)
  • M – massa molar (g/mol)
  • p – pressão (atm)
  •  – o diâmetro médio de colisão (os valores são tabulados[3]) (Å)
  • Ω – um integral de colisão dependente da temperatua (os valores são tabulados[3] mas usualmente de ordem 1) (adimensional).
  • D – coeficiente de difusão (o qual é expresso em cm2/s quando as outras magnitudes são expressas nas unidades dadas acima[2]).

Dependência da pressão do coeficiente de difusão[editar | editar código-fonte]

Para autodifusão em gases a duas pressões diferentes (mas a mesma temperatura), a seguinte equação empírica tem sido sugerida:[2]

onde:

P1 e P2 denotam pressões 1 e 2, respectivamente
D é o coeficiente de difusão (m²/s)
ρ é a densidade mássica do gás (kg/m3)

Difusividade efetiva em meio poroso[editar | editar código-fonte]

O coeficiente de difusão efetiva[4] descreve a difusão através dos espaços dos poros de um meio poroso. Ele é macroscópico na natureza, porque não são poros individuais mas o espaço poroso inteiro que necessita ser considerado. O coeficiente de difusão efetiva para transporte através dos poros, De, é estimado como segue:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde:

  • D - coeficiente de difusão em gas ou líquido preenchendo os poros (m2s−1)
  • εt - porosidade disponível para o transporte (adimensional)
  • δ - constrictividade (adimensional)
  • τ - tortuosidade (adimensional)

porosidade disponível para o transporte é igual à porosidade total menos os poros que, devido ao seu tamanho, não são acessíveis às partículas de difusão, e menos becos sem saída e poros cegos (i.e., poros sem estar conectado com o resto do sistema de poros).

A constrictividade descreve o abrandamento da difusão por aumento da viscosidade em poros estreitos como resultado de uma maior proximidade com a parede de poros médios. É uma função do diâmetro dos poros e o tamanho das partículas em difusão.




Nenhum comentário:

Postar um comentário